Learning equilibria in symmetric auction games using artificial neural networks
[ad_1]
Brown, N. & Sandholm, T. Superhuman AI for Multiplayer Poker. Science 365, 885-890 (2019).
Daskalakis, C., Ilyas, A., Syrgkanis, V. & Zeng, H. Training with optimism. Preprint at https://arxiv.org/abs/1711.00141 (2017).
Silver, D. et al. A general reinforcement learning algorithm that masters chess, shogi and Go through self-play. Science 362, 1140â1144 (2018).
Daskalakis, C., Goldberg, P. & Papadimitriou, C. The complexity of calculating a Nash equilibrium. SIAM J. Comput. 39, 195-259 (2009).
Brown, G. W in Analysis of production activity and allocation (ed. Koopmans, TC) 374-376 (Wiley, 1951).
Google Scholar
Zinkevich, M. On-line convex programming and generalized infinitesimal gradient ascension. In Proc. 20th International Conference on Machine Learning 928-936 (ICML, 2003).
Bowling, M. Convergence and no-regret in multiagent learning. In Advances in Neural Information Processing Systems 209-216 (NIPS, 2005).
Milgrom, PR & Weber, RJ A Theory of Bidding and Bidding. Econometrics 50, 1089-1122 (1982).
Klemperer, P. Auction theory: a guide to the literature. J. Econ. Surveys 13, 227-286 (1999).
Vickrey, W. Counter-Speculation, Auctions, and Competitive Closed Tenders. J. Finances 16, 8-37 (1961).
Krishna, V. Auction theory (Academic, 2009).
Bergemann, D. & Morris, S. Robust implementation in direct mechanisms. Rev. Econ. Stud. 76, 1175-1204 (2009).
Campo, S., Perrigne, I. & Vuong, Q. Asymmetry in first-price auctions with private affiliates. J. Appl. Econom. 18, 179-207 (2003).
Janssen, MC Reflections on the 2020 Memorial Nobel Prize for Paul Milgrom and Robert Wilson. Erasmus J. Philos. Econ. 13, 177-184 (2020).
Google Scholar
Heinrich, J. & Silver, D. Deep learning by reinforcing self-play in games with imperfect information. Preprint at https://arxiv.org/abs/1603.01121 (2016).
Lanctot, M. et al. A unified game theory approach for multi-agent reinforcement learning. In Proc. 31st International Conference on Neural Information Processing Systems (NIPS, 2017).
Brown, N., Lerer, A., Gross, S. & Sandholm, T. Minimization of deep counterfactual regrets. In Proc. 36th International Conference on Machine Learning 793-802 (PMLR, 2019).
Brown, N. & Sandholm, T. Superhuman AI for Multiplayer Poker. Science 365, 885-890 (2019).
Reeves, DM & Wellman, MP Computing equilibrium strategies in infinite sets of incomplete information. Proc. 20th Conference on Uncertainty in Artificial Intelligence (AUI, 2004).
Naroditskiy, V. & Greenwald, A. Using the iterated best response to find Bayes-Nash equilibria in auctions 1894-1895 (AAAI, 2007).
Rabinovich, Z., Naroditskiy, V., Gerding, EH & Jennings, NR Calculation of pure Bayesian-Nash equilibria in finite action and continuous type games. Artif. Inform. 195, 106-139 (2013).
Bosshard, V., Bünz, B., Lubin, B. & Seuken, S. Calculation of Bayes-Nash equilibria in combinatorial auctions with continuous value and action spaces. In Proc. 26th Joint International Conference on Artificial Intelligence 119-127 (IJCAI, 2017).
Bosshard, V., Bünz, B., Lubin, B. & Seuken, S. Calculation of Bayes-Nash equilibria in combinatorial auctions with verification. J. Artif. Inform. Res. 69, 531-570 (2020).
Feng, Z., Guruganesh, G., Liaw, C., Mehta, A. & Sethi, A. Convergence analysis of no-regret auction algorithms in repeat auctions. Preprint at https://arxiv.org/abs/2009.06136 (2020).
Li, Z. & Wellman, MP Evolutionary strategies for the approximate resolution of Bayesian games. In Proc. AAAI Conference on Artificial Intelligence Flight. 35, 5531-5540 (AAAI, 2021).
Cai, Y. & Papadimitriou, C. Concurrent Bayesian auctions and computational complexity. In Proc. 15th ACM Conference on Economics and Computing 895-910 (ACM, 2014).
Fudenberg, D. & Levine, DK Learning and Balance. Annu. Rev. Econ. 1, 385-420 (2009).
Jafari, A., Greenwald, A., Gondek, D. & Ercal, G. On No Regret Learning, Fictional Play and Nash Balance. Proc. 18th International Conference on Machine Learning 226-233 (ICML, 2001).
Stoltz, G. & Lugosi, G. Learning correlated equilibria in games with compact sets of strategies. Econ games. Behave yourself. 59, 187-208 (2007).
Hartline, J., Syrgkanis, V. & Tardos, E. No-Regret Learning in Bayesian Games. In Advances in Neural Information Processing Systems (eds Cortes, C. et al.) Vol. 28, 3061-3069 (NIPS, 2015); http://papers.nips.cc/paper/6016-no-regret-learning-in-bayesian-games.pdf
Foster, DJ, Li, Z., Lykouris, T., Sridharan, K. & Tardos, E. Learning in games: robustness of rapid convergence. In Advances in Neural Information Processing Systems 4734-4742 (NIPS, 2016).
Viossat, Y. & Zapechelnyuk, A. Dynamics without regret and fictitious play. J. Econ. Theory 148, 825-842 (2013).
Mazumdar, E., Ratliff, LJ & Sastry, SS On gradient learning in continuous games. SIMODS 2, 103-131 (2020).
Dütting, P., Feng, Z., Narasimhan, H., Parkes, D. & Ravindranath, SS Optimal auctions through deep learning. In International Conference on Machine Learning 1706-1715 (PMLR, 2019).
Feng, Z., Narasimhan, H. & Parkes, DC Deep learning for revenue and budget optimized auctions. In Proc. 17th International Conference on Autonomous Agents and Multi-Agent Systems 354-362 (AAMAS, 2018).
Tacchetti, A., Strouse, D., Garnelo, M., Graepel, T. & Bachrach, Y. Neural architecture for the design of truthful and efficient auctions. Preprint at https://arxiv.org/abs/1907.05181 (2019).
Weissteiner, J. & Seuken, S. Iterative combinatorial auctions based on deep learning. In Proc. AAAI Conference on Artificial Intelligence Flight. 34, 2284-2293 (AAAI, 2020).
Morrill, D. et al. Retrospective and sequential rationality of the correlated game. Preprint at https://arxiv.org/abs/2012.05874 (2020).
Hartford, JS Deep Learning to Predict Human Strategic Behavior. doctorate thesis, Univ. British Columbia (2016).
Ghani, R. & Simmons, H. Predicting the final price of online auctions. In Proc. International Workshop on Data Mining and Adaptive Modeling Methods for Economics and Management (CiteSeer, 2004).
Zheng, S. et al. The AI ââEconomist: Improving equality and productivity through AI-driven tax policies. Preprint at https://arxiv.org/abs/2004.13332 (2020).
Goeree, JK & Lien, Y. On the impossibility of core selection auctions. Theoretical econ. 11, 41-52 (2016).
Bichler, M. & Goeree, JK Spectrum Auction Design Manual (Cambridge Univ. Press, 2017).
Debnath, L. et al. Introduction to Hilbert spaces with applications (Academic, 2005).
Bichler, M., Guler, K. & Mayer, S. Shared-Price Supply Auctions – Can Bayesian Equilibrium Strategies Predict Human Bidding Behavior in Multi-Object Auctions? Prod. Oper. To manage. 24, 1012-1027 (2015).
Ui, T. Bayesian nash equilibrium and variational inequalities. J. Maths. Econ. 63, 139-146 (2016).
Hornik, K. Capacities of approximation of multilayer feedforward networks. Neural networks 4, 251-257 (1991).
Wierstra, D. et al. Natural evolution strategies. J. Mach. To learn. Res. 15, 949-980 (2014).
Salimans, T., Ho, J., Chen, X., Sidor, S. & Sutskever, I. Evolutionary strategies as an evolutionary alternative to reinforcement learning. Preprint at https://arxiv.org/abs/1703.03864 (2017).
BenaÃm, M., Hofbauer, J. & Sorin, S. Perturbations of dynamical systems with defined values, with applications to game theory. Dyna. Games Appl. 2, 195-205 (2012).
Letcher, A. et al. Differentiable game mechanics. J. Mach. To learn. Res. 20, 1â40 (2019).
Monderer, D. & Shapley, LS Potential games. Econ games. Behave yourself. 14, 124-143 (1996).
Bünz, B., Lubin, B. & Seuken, S. Designing payment rules by selection of kernels: a computer research approach. In Proc. ACM 2018 Conference on Economics and Computing 109 (ACM, 2018).
Ausubel, LM & Baranov, O. Nuclei selection auctions with incomplete information. Int. J. Game theory 49, 251-273 (2019).
Guler, K., Bichler, M. & Petrakis, I. Ascending combinatorial auctions with risk-averse bidders. Group decisions. To negotiate. 25, 609-639 (2016).
Jehiel, P., Meyer-ter-Vehn, M., Moldovanu, B. & Zame, WR The limits of ex post implementation. Econometrics 74, 585-610 (2006).
Daskalakis, C., Skoulakis, S. & Zampetakis, M. The complexity of constrained min-max optimization. In Pro. 53rd Annual ACM SIGACT Symposium on Computing Theory 1466-1478 (STOC, 2021).
Vorobeychik, Y., Reeves, DM & Wellman, MP Design of constrained automated mechanisms for infinite sets of incomplete information. In Proc. 23rd Conference on Uncertainty in Artificial Intelligence 400-407 (AUI, 2007).
Viqueira, EA, Cousins, C., Mohammad, Y. & Greenwald, A. Design of empirical mechanisms: design of mechanisms from data. In Proc. 35th conference on uncertainty in artificial intelligence 1094-1104 (PMLR, 2020).
Kingma, DP & Ba, J. Adam: a stochastic optimization method. Preprint at https://arxiv.org/abs/1412.6980 (2015).
Paszke, A. et al. Automatic differentiation in pytorch. In 31st Neural Information Processing Systems Conference (NIPS, 2017).
Heidekrüger, S., Kohring, N., Sutterer, S. & Bichler, M. bnelearn: a framework for learning balance in sealed auctions (Github, 2021); https://github.com/heidekrueger/bnelearn
[ad_2]